23 research outputs found

    SUFFICIENT OPTIMALITY CONDITIONS FOR THE MOREAU-YOSIDA TYPE REGULARIZATION CONCEPT APPLIED TO SEMILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE STATE CONSTRAINTS

    Get PDF
    We develop sufficient optimality conditions for a Moreau-Yosidaregularized optimal control problem governed by a semilinear ellipticPDE with pointwise constraints on the state and the control. We makeuse of the equivalence of a setting of Moreau-Yosida regularization to a special setting of the virtual control concept,for which standard second order sufficient conditions have been shown. Moreover, we present a numerical example,solving a Moreau-Yosida regularized model problem with an SQP method

    Regularization error estimates for semilinear elliptic optimal control problems with pointwise state and control constraints

    Get PDF
    In this paper a class of semilinear elliptic optimal control problem with pointwise state and control constraints is studied. A sufficient second order optimality condition and uniqueness of the dual variables are assumed for that problem. Sufficient second order optimality conditions are shown for regularized problems with small regularization parameter. Moreover, error estimates with respect to the regularization parameter are derived

    Multigoal-oriented optimal control problems with nonlinear PDE constraints

    Full text link
    In this work, we consider an optimal control problem subject to a nonlinear PDE constraint and apply it to the regularized pp-Laplace equation. To this end, a reduced unconstrained optimization problem in terms of the control variable is formulated. Based on the reduced approach, we then derive an a posteriori error representation and mesh adaptivity for multiple quantities of interest. All quantities are combined to one, and then the dual-weighted residual (DWR) method is applied to this combined functional. Furthermore, the estimator allows for balancing the discretization error and the nonlinear iteration error. These developments allow us to formulate an adaptive solution strategy, which is finally substantiated via several numerical examples

    Solving Time-Dependent Optimal Control Problems in Comsol Multiphysics by Space-Time Discretizations

    Get PDF
    We use COMSOL Multiphysics to solve time-dependent optimal control problems for partial differential equations whose optimality conditions can be formulated as a PDE. For a class of linear-quadratic model problems we summarize known analytic results on existence of solutions and first order optimality conditions that exhibit the typical feature of time-dependent control problems, namely the fact that a part of the optimality system has to be integrated backward in time. We present a strategy that is based on the treatment of the coupled optimality system in the space-time cylinder. A brief motivation of this approach is given by showing that the optimality system is elliptic in some sence. Numerical examples show advantages and limits of the usage of COMSOL Multiphysics and of our approach

    A Smooth Regularization of the Projection Formula for Constrained Parabolic Optimal Control Problems

    Get PDF
    We present a smooth, i.e. differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial differential equations. The optimality conditions are then given by coupled systems of parabolic PDEs. For constrained problems, a non-smooth projection operator occurs in the optimality conditions. For this projection operator, we present in detail a regularization method based on smoothed sign, minimum and maximum functions. For all three cases, i.e (1) the unconstrained problem, (2) the constrained problem including the projection, and (3) the regularized projection, we verify that the optimality conditions can be equivalently expressed by an elliptic boundary value problem in the space-time domain. For this problem and all three cases we discuss existence and uniqueness issues. Motivated by this elliptic problem, we use a simultaneous space-time discretization for numerical tests. Here we show how a standard finite element software environment allows to solve the problem and thus to verify the applicability of this approach without much implementational effort. We present numerical results for an example problem

    Numerische Analysis von Optimalsteuerungsproblemen mit partiellen Differentialgleichungen und punktweisen UngleichungsbeschrÀnkungen an Zustand und Steuerung

    No full text
    Gegenstand dieser Arbeit ist die numerische Analysis von Optimierungsproblemen mit partiellen Differentialgleichungen (PDEs), deren Zustand oder Steuerung punktweisen UngleichungsbeschrĂ€nkungen unterliegt. Wir interessieren uns insbesondere fĂŒr nichtkonvexe Probleme mit semilinearer Zustandsgleichung. Es liegt in der Natur derartiger Probleme, dass eine Lösung oftmals nur numerisch gefunden werden kann. Man interessiert sich deshalb fĂŒr den Fehler zwischen einer (lokalen) Lösung des kontinuierlichen Problems und einer zugehörigen (lokalen) diskreten Lösung. Eine umfassende Diskussion des kontinuierliche Problems ist dabei eine Grundvoraussetzung. Insbesondere bei vorhanden punktweisen ZustandsbeschrĂ€nkungen treten spezifische Schwierigkeiten sowohl analytischer als auch numerischer Art auf, denen man entweder direkt oder mit Hilfe von RegularisierungsansĂ€tzen begegnen kann. Mit dieser Dissertation leisten wir auf verschiedene Weise neue BeitrĂ€ge zur Diskussion von Optimalsteuerungsproblemen mit punktweisen Zustandsschranken aber auch reinen Kontrollschranken. Nach kurzer EinfĂŒhrung in die Thematik und Bereitstellung gewisser Grundlagen beschĂ€ftigen wir uns in Kapitel 3 mit einem elliptischen semiinfiniten Optimalsteuerungsproblem. Bekannte Resultate zu notwendigen und hinreichenden OptimalitĂ€tsbedingungen, die vergleichsweise hohe RegularitĂ€t von Lösungen elliptischer PDEs und die EndlichdimensionalitĂ€t des Steuerungsraumes lassen eine direkte Diskussion von a priori DiskretisierungsfehlerabschĂ€tzungen fĂŒr dieses Problem zu. Unser Hauptergebnis in diesem Kapitel ist eine a priori Fehlerschranke der Ordnung O(h^2|ln h|) fĂŒr lokale Lösungen einer Finite-Elemente-Diskretisierung des Optimalsteuerungsproblems mit Gitterweite h in einem zweidimensionalen Ortsgebiet. Dazu stellen wir gewisse Annahmen an die Struktur der aktiven Menge. In Kapitel 4 betrachten wir ein parabolisches Optimalsteuerungsproblem mit punktweise beschrĂ€kten Steuerungsfunktionen, semilinearer Zustandsgleichung und punktweisen ZustandsbeschrĂ€nkungen im gesamten Orts-Zeit-Gebiet. Im Gegensatz zu dem in Kapitel 3 diskutierten elliptischen Problem sind hier u.a. hinreichende Bedingungen zweiter Ordnung nur fĂŒr eindimensionale Ortsgebiete verfĂŒgbar. Auch lĂ€ĂŸt die Verwendung von Steuerungsfunktionen an Stelle endlich vieler Parameter keine sinnvollen a priori Annahmen an die Struktur der aktiven Menge zu. Wir regularisieren daher das Problem mit der auf Meyer, Rösch und Tröltzsch zurĂŒckgehenden Lavrentievregularisierung, und können so unter anderem auf bekannte Resultate zurĂŒckgreifen, die eine höhere RegularitĂ€t der Lagrangeschen Multiplikatoren sichern und eine tiefergehende Analysis ermöglichen. Wir beweisen ein Konvergenzresultat fĂŒr lokale Lösungen des regularisierten Problems und weisen die lokale Eindeutigkeit regularisierter Lösungen nach. In Kapitel 5 untersuchen wir die Finite-Element-Diskretisierung eines kontrollbeschrĂ€nkten parabolischen Optimalsteuerungsproblems mit semilinearer Zustandsgleichung. Wir beweisen Fehlerordnungen fĂŒr diskrete lokale Lösungen in der L^2-Norm. Dabei erweitern wir Resultate, die fĂŒr linear-quadratische Probleme bekannt sind, auf den nichtkonvexen Fall. Es mĂŒssen insbesondere BeschrĂ€nktheitsresultate in der L^infty-Norm der semidiskreten und diskreten ZustĂ€nde gezeigt werden, die unabhĂ€ngig von den Diskretisierungsparametern gelten. Außerdem erfordert die Diskussion lokal optimaler Lösungen, dass Konvergenzresultate und quadratische Wachstumsbedingungen in denselben Normen betrachtet werden.The purpose of this thesis is the numerical analysis of optimal control problems with partial differential equations (PDEs), whose control or state is subject to pointwise inequality constraints. We are specifically interested in nonconvex problems with semilinear state equation. It is intrinsic to the considered problem class that solutions can often only be found by numerical methods. Consequently, one is interested in estimating the error between a (local) solution of the continuous problem and an associated discrete local solution. A basic requirement for this purpose is a thorough discussion of the continuous problem. In the presence of pointwise state constraints this leads to specific difficulties of analytical and numerical nature. These difficulties have to be approached either directly or by means of regularization. With this thesis we make several new contributions to the discussion of optimal control problems with pointwise state constraints but also those with pure control constraints. After a short introduction into the field of research and providing some basic theoretical results we discuss in Chapter 3 a semiinfinite elliptic optimal control problem. Known results on necessary and sufficient optimality conditions, the comparably high regularity of solutions to elliptic PDEs, as well as the finite dimensional control space allows to address a priori discretization error estimates for this problem directly, i.e. without further regularization. Our main result in this chapter is an a priori error bound of order O(h^2|ln h|) for local solutions of a finite element discretization with mesh size h of this optimal control problem in two space dimensions. For that, we rely on certain assumptions on the structure of the active set. In Chapter 4 we address a parabolic optimal control problem with L^infty bounds on the control functions, semilinear state equation, and pointwise state constraints in the whole space-time-domain. In contrast to the elliptic problem discussed in Chapter 3, second order sufficient conditions areonly available for one-dimensional spatial domains. Moreover, the use of control functions instead of finitely many control parameters does not allow any a priori assumptions on the structure of the active sets. Therefore, we use a Lavrentiev regularization as suggested originally by Meyer, Rösch and Tröltzsch. Consequently, we can make use of available higher regularity results for the Lagrange multipliers that allow for a deeper analysis. We prove a convergence result for locally optimal solutions of the regularized problem and show local uniqueness of regularized local solutions. In Chapter 5 we analyze the finite element discretization of a control-constrained parabolic optimal control problem with semilinear state equation. We prove error estimates for discrete local solutions in the L^2-norm. We extend known results for linear-quadratic problems to the nonconvex setting. In particular, we have to prove boundedness results for the semidiscrete and discrete state functions in the L^infty-norm that hold independently of the discretization parameters. Moreover, the discussion of local solutions requires convergence results and quadratic growth conditions to be considered in the same spaces
    corecore